Exercise 4

Show that Eq. A.2-6 is valid for the particular case $i=1, h=2$.
Show that Eq. A.2-7 is valid for the particular case $i=j=m=1, n=2$.

Solution

Eq. A.2-6 says that

$$
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} \varepsilon_{h j k}=2 \delta_{i h},
$$

where $\delta_{i h}$ is the Kronecker delta function and $\varepsilon_{i j k}$ is the permutation symbol.

$$
\begin{aligned}
& \delta_{i h}= \begin{cases}1 & i=h \\
0 & i \neq h\end{cases} \\
& \varepsilon_{i j k}= \begin{cases}1 & \text { if } i j k=123,231, \text { or } 312 \\
-1 & \text { if } i j k=321,132, \text { or } 213 \\
0 & \text { if any indices are the same }\end{cases}
\end{aligned}
$$

If $i=1$ and $h=2$, then the right-hand side becomes

$$
2 \delta_{i h}=2 \delta_{12}=0
$$

The left-hand side becomes

$$
\begin{aligned}
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} \varepsilon_{h j k}=\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{1 j k} \varepsilon_{2 j k}= & \sum_{j=1}^{3}\left(\varepsilon_{1 j 1} \varepsilon_{2 j 1}+\varepsilon_{1 j 2} \varepsilon_{2 j 2}+\varepsilon_{1 j 3} \varepsilon_{2 j 3}\right) \\
= & \sum_{j=1}^{3} \varepsilon_{1 j 1} \varepsilon_{2 j 1}+\sum_{j=1}^{3} \varepsilon_{1 j 2} \varepsilon_{2 j 2}+\sum_{j=1}^{3} \varepsilon_{1 j 3} \varepsilon_{2 j 3} \\
= & \varepsilon_{111} \varepsilon_{211}+\varepsilon_{121} \varepsilon_{221}+\varepsilon_{131} \varepsilon_{231} \\
& +\varepsilon_{112} \varepsilon_{212}+\varepsilon_{122} \varepsilon_{222}+\varepsilon_{132} \varepsilon_{232} \\
& +\varepsilon_{113} \varepsilon_{213}+\varepsilon_{123} \varepsilon_{223}+\varepsilon_{133} \varepsilon_{233} \\
= & 0
\end{aligned}
$$

Both sides are the same. Therefore, Eq. A.2-6 is valid for the particular case $i=1, h=2$.

Eq. A.2-7 says that

$$
\sum_{k=1}^{3} \varepsilon_{i j k} \varepsilon_{m n k}=\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m}
$$

If $i=1, j=1, m=1$, and $n=2$, then the right-hand side becomes

$$
\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m}=\delta_{11} \delta_{12}-\delta_{12} \delta_{11}=0
$$

The left-hand side becomes

$$
\sum_{k=1}^{3} \varepsilon_{i j k} \varepsilon_{m n k}=\sum_{k=1}^{3} \varepsilon_{11 k} \varepsilon_{12 k}=\varepsilon_{111} \varepsilon_{121}+\varepsilon_{112} \varepsilon_{122}+\varepsilon_{113} \varepsilon_{123}=0
$$

Both sides are the same. Therefore, Eq. A.2-7 is valid for the particular case $i=j=m=1, n=2$.

